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Abstract

Objective: Assessing pain in individuals with neurological conditions like cerebral palsy is challenging due to limited
self-reporting and expression abilities. Current methods lack sensitivity and specificity, underlining the need for a reliable
evaluation protocol. An automated facial recognition system could revolutionize pain assessment for such patients.

The research focuses on two primary goals: developing a dataset of facial pain expressions for individuals with cerebral
palsy and creating a deep learning-based automated system for pain assessment tailored to this group.

Methods: The study trained ten neural networks using three pain image databases and a newly curated CP-PAIN Dataset of
109 images from cerebral palsy patients, classified by experts using the Facial Action Coding System.

Results: The InceptionV3 model demonstrated promising results, achieving 62.67% accuracy and a 61.12% F1 score on the
CP-PAIN dataset. Explainable AI techniques confirmed the consistency of crucial features for pain identification across models.

Conclusion: The study underscores the potential of deep learning in developing reliable pain detection systems using facial
recognition for individuals with communication impairments due to neurological conditions. A more extensive and diverse
dataset could further enhance the models’ sensitivity to subtle pain expressions in cerebral palsy patients and possibly
extend to other complex neurological disorders. This research marks a significant step toward more empathetic and accurate
pain management for vulnerable populations.
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Highlights

• We construct a pioneering dataset of facial images illus-
trating pain in cerebral palsy.

• Our automated facial recognition system can enhance
pain assessment in cerebral palsy.

• This novel system may be extrapolated to other complex
neurological conditions.

Introduction
Pain assessment is exceedingly challenging in individuals
who, in addition to lacking self-report capabilities, present
complex neurological conditions that impact both facial and
bodily expressions. Cerebral palsy (CP) stands as a group
of enduring neurological disorders impacting motor function,
ranking among the most prevalent lifetime medical condi-
tions.1,2 Its prevalence, estimated at 2–3 per 1000 live
births in developed countries,3 highlights its significant
impact. Due to disruptions in brain development, individuals
with CP often manifest a range of non-motor comorbidities,
notably pain (74%–82%), intellectual disability (50%),
speech impairment (25%), epilepsy (25%), urinary/fecal
incontinence (25%), and behavioral or sleep disorders (20%
to 25%).4,5

This chronic condition, spanning from birth throughout
one’s lifespan, requires ongoing therapy services.6 This
demand places substantial financial burdens on families
and healthcare systems and leads to extended inpatient
stays.7,8 Given its chronic nature, cognitive and speech-
related comorbidities, and the unique motor impairments
that can affect non-verbal communication, CP serves as a
valuable model for investigating complex chronic
pathologies.

Pain, with its exceedingly high prevalence, emerges as
one of the main limitations to carrying out activities of
daily living for individuals with CP.9 The complexity of
accurately diagnosing pain in those with cognitive or com-
munication impairments10 has led to a historical pattern of
underestimation and inadequate treatment of pain in these
individuals.11–14 It is posited that the self-reports from indi-
viduals with CP regarding their pain should be considered
paramount in identifying the presence, intensity, and the
overall effect this pain has on their daily lives.15

Consequently, initiating the pain assessment process with
efforts to obtain either verbal or non-verbal self-reports of
pain—utilizing alternative and augmentative communica-
tion systems, deliberate hand gestures, or nodding, for
example—is recommended, even for those with cognitive
impairments.16 Given that, as mentioned previously, an
estimated 50% of individuals with CP are affected by intel-
lectual disabilities,4 which may hinder self-reporting abil-
ities, coupled with evidence indicating that the majority
of adults with CP experience various communication disor-
ders,10 the challenge of pain assessment becomes markedly

pronounced. This difficulty in pain identification poses a
substantial challenge not only for clinical and socio-health
institutions tasked with caring for these individuals but
also for their families, who frequently describe pain identi-
fication as a particularly daunting task.17–20 Both stake-
holders underscore the critical need for the development
and implementation of reliable and accurate methods for
evaluating pain in those unable to self-communicate their
pain experiences.21 However, the scientific community
has yet to establish a standard for pain assessment in this
demographic,22 pointing out an area that urgently needs
attention and improvement.

Recent years have seen various approaches to address
pain assessment in non-communicative populations. These
range from methods based on physiological signs to proxy
observation of painful behaviors. Research has explored
the utility of specific pain biomarkers such as salivary meta-
bolites,23,24 brain activity,25,26 cardiorespiratory vital signs,
skin conductance, muscle tension, or heart rate variabil-
ity27–29 for identifying the presence of acute or chronic pain.

Observational behavioral scales are the most used tools
to assess pain in this population.30 However, their use is
not without controversy, as they can yield subjective,
observer-dependent data,31–33 and some may lack specifi-
city or sensitivity.34 Observers might also confuse other
emotions, such as fear or stress, for pain.31 Further,
studies comparing pain assessments in children with CP
by their parents have uncovered both overestimations and
underestimations of pain by parents.35,36 This disparity in
pain assessment extends to healthcare professionals as
well.37

In this context, the Facial Action Coding System
(FACS),38 initially designed to reduce subjectivity and
provide objective descriptions of facial expressions for
basic emotions, can be employed to categorize pain more
objectively.39 However, mastering this system requires sig-
nificant effort, and its microanalytic methods can be chal-
lenging to apply in routine clinical pain evaluations.40

In order to automate the facial expression recognition,
systems using deep learning (DL) approaches have led to
significant advancements, particularly in the context of
emotions. DL has already shown successful results in
other tasks related to the identification of patterns in
image-related tasks such as segmentation in medical
imaging. Traditionally, human experts in the field rely on
their knowledge and prior experience to perform these
tasks. However, the advent of deep learning has revolutio-
nized this process by enabling automatic pattern learning.41

Consequently, numerous studies have leveraged deep
learning techniques across various tasks in medical
imaging. For instance, deep learning has been applied to
segmentation tasks in brain images,42,43 image registration,44

and image fusion for Alzheimer’s Disease/Mild Cognitive
Impairment (AD/MCI) diagnosis.45 Additionally, it has been
utilized for image annotation in chest X-rays,46 diagnosis of
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brain disorders,47 segmentation of brain tumors,48 and analysis
of microscopic images.49 These applications highlight the ver-
satility and effectiveness of deep learning in addressing
various challenges in medical image analysis, paving the
way for improved diagnosis and treatment in healthcare.

In order to automate the facial expression recognition,
systems using deep learning (DL) approaches have led to sig-
nificant advancements, particularly in the context of emo-
tions, and they rely on audiovisual databases containing
emotional expressions.50 Nowadays, we find multiple data-
sets housing collections of facial expressions depicting
pain, both as standalone expressions and within broader
emotional expression datasets.51,52 These datasets encom-
pass images or videos capturing spontaneous pain, such as
shoulder, neck, or lumbar pain, as well as pain induced by
thermal or electrical stimuli. Some even include neonates
or preschool-age children receiving injections. Within these
repositories, one can find images portraying at least two
levels of pain intensity, and they predominantly involve
healthy individuals.52 These datasets have paved the way
for the application of artificial intelligence methods, resulting
in impressive achievements in pain detection, even distin-
guishing between spontaneous and simulated facial pain
expressions.53

Automated systems grounded in the FACS, including
FaceReader,54 OpenFace,55 AFAR toolbox,56 or
PainCheck®,57 have been developed for pain assessment
in diverse non-communicative populations, including
infants,58 and individuals with advanced dementia.59

However, these solutions may lack the specificity required
to assess pain in complex neurological pathologies, such as
individuals with CP, who may exhibit motor dysfunctions
affecting facial expressions of pain.

Further, to understand the decision-making processes of
the AI system and explore the idiosyncrasies on how it
operates with individuals with CP, eXplainable Artificial
Intelligence (XAI) methods can be applied.60 XAI techni-
ques provide comprehensive explanations elucidating the
decision-making processes and output generation of DL
models. This facilitates the comprehension and interpret-
ation of results by human users, enhances model trust-
worthiness, discerns causality among data variables, or
informs decision taking.60,61 In the case of facial expression
recognition, we find works applying XAI techniques to
emotion recognition such as sadness or happiness62,63 or
the work by Weitz et al. (2019),64 whose research
focused on the differences among facial expressions like
anger or happiness, and pain.

The aim of this work is to improve pain assessment
accuracy in individuals with complex neurological condi-
tions, potentially revolutionizing the way we address their
pain-related needs. In this research, our emphasis centers
on deep neural networks trained using pain expression
images. This focus stems from the inherent capability of
these networks to adeptly handle the intricate challenges

associated with recognition in real-world, or “in the
wild”, scenarios, as evidenced by Li and Deng (2020).65

Our study is confined to the analysis of static images, as
opposed to dynamic sequences or video data. The current
study sets out to pioneer an automated facial recognition
system, grounded in DL, to evaluate pain in individuals
with complex neurological pathologies, specifically adults
with CP. The proposed DL system will undergo training
using a variety of existing pain datasets that capture
diverse pain conditions. Additionally, a built purpose-
designed dataset tailored for individuals with CP, denoted
as CP-PAIN, will be used to evaluate the system’s
effectiveness.

Subsequently, the automated system’s pain scores will be
compared with evaluations by clinicians employing three
commonly used observational scales within the CP popula-
tion: The Wong Baker FACES® Pain Rating Scale,66 the
Facial Action Coding System (FACS), and The Non-
Communicating Adults Pain Checklist (NCAPC).67

Finally, to delve deeper into the mechanisms underlying
DL techniques, we include eXplainable Artificial
Intelligence (XAI) techniques to understand the rationale
behind the outcomes of the pain perception mechanisms
employed by DL models and explore potential commonal-
ities among diverse trained DL models, especially when
used with people with CP.

The work is organized as follows. Section 2 describes
the methods used to build the dataset of pain expressions
in individuals with CP and the automated pain recognition
system. Section 3 describes the results achieved and the last
Section discusses the main findings and concludes the
work.

Methods
Within this section, we describe the methodology encom-
passing the construction, labelling, and evaluation of a
dataset of pain expressions in individuals with CP
(CP-PAIN), as well as the training phases of the pain recog-
nition artificial intelligence (AI) system.

Constructing and assessing the CP-PAIN database

Prior to the construction of the CP-PAIN database, we
adhered to a robust ethical framework. Written informed
consent, encompassing the use of images for informative
purposes, was obtained. This process involved participants
with CP who had the legal capacity to provide consent
(n = 10), as well as legal representatives of remaining
participants (n = 43). The documentation was thoughtfully
written in standard form and an accessible easy-to-read
format to ensure its comprehension by as many participants
as possible.
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Ethical compliance and approvals. This researchmeticulously
adhered to the principles outlined in the Declaration of
Helsinki (1991). The research protocol received approval
from both the ASPACE Foundation’s ethics committee and
the Research Ethics Commission of the Balearic Islands
(protocol number IB4046/19), affirming its ethical rigor.

Participants. The study extended invitations to all users
diagnosed with CP, or their legal representatives, affiliated
with the Adult Life Promotion Services of the Cerebral
Palsy Association (ASPACE) in the Balearic Islands
(Majorca, Spain) and Toledo (Castilla-La Mancha, Spain).
Participants were exclusively selected based on two criteria:
a diagnosis of CP and being over 18 years old. The
only exclusion criterion was the lack of consent for the
use of personal images by the institutions involved. A
total of 53 individuals (mean age = 37.57 (9.88) years,
age range = 21–69 years, including 19 females) agreed to
participate. Subsequently, they or their respective legal
representatives formally filled in the informed consent.

Table 1 displays the clinical characteristics of the 53
participants with CP.

Measures. In addition to gathering sociodemographic and
clinical data (e.g., age, sex, type of CP, level of motor,
and communication impairment) from medical records,
the study implemented the following measures:

Observational scales. 1. The Facial Action Coding System
(FACS): Designed to minimize subjective judgments in
assessing facial activity, FACS is a widely employed
system for coding emotional facial expressions in scientific
studies.70 It has been successfully applied to individuals
with communication disorders and CP,71 and a recent sys-
tematic review and meta-analysis concluded that it is the
preferred scale for individuals with CP who have communi-
cation impairments.30

FACS dissects facial expressions into 44 individual
components of muscle movement, known as Action Units
(AUs), rating them on a 6-point scale (0 = no expression,
5 = extreme expression). Pain is identified through six spe-
cific AUs: lowering of the eyebrows (AU4), elevation of the
cheeks and compression of the eyelids and/or contraction of
the cheekbones (AU6/AU7), wrinkling of the nose and/or
raising the upper lip (AU9/AU10), and closing the eyes
(AU43).40,72

The total pain score is calculated as follows: Pain
score = AU4 + (AU6AU7) + (AU9AU10) + AU43, yield-
ing a 20-point scale.

2. The Non-Communicating Adults Pain Checklist
(NCAPC): This 18-item scale assesses pain behaviors
through six components: vocal response, emotional response,
facial expression, body language, protective responses,
and physiological responses. Derived from the Non-

Communicating Children Pain Checklist (NCCPC), the
NCAPC offers optimal utility irrespective of the evaluator’s
familiarity with the individual.73 The NCAPC has demon-
strated strong psychometric properties and the capacity to
identify pain and its intensity in adults with intellectual and
developmental disabilities.67 Evidence points to this scale,
along with FACS, as the optimal ones for assessing pain in
adults with CP.74

3. The Wong Baker FACES® Pain Rating Scale: This
scale rates pain on a scale from 0 (no pain) to 10 (worst pos-
sible pain) by comparing the patient’s facial expression to
the provided scale images. While commonly used in pedi-
atric populations, it has also found utility applied to indivi-
duals with disabilities and communication disorders.75

As depicted, these scales, especially FACS and NCAPC,
were selected over others due to their specific relevance,
applicability, and proven ability to address the unique chal-
lenges of assessing pain in adults with CP, particularly
those facing communication barriers. The selection of the
Wong Baker FACES® Pain Rating Scale was primarily
driven by its ease of use and the consideration that it is a
tool for individuals with CP and cognitive impairment
could utilize to rate their level of pain. This combination
of scales allows for a comprehensive and nuanced approach
to pain evaluation in this specific population, leveraging the
strengths of each tool and addressing the particular needs of
our study cohort.

Procedure for data collection. Video recordings capturing
facial and body expressions were conducted in situations
where participants with CP either underwent potential
painful procedures or when caregivers identified signs of
pain in other care procedures (e. g. feeding, personal
hygiene, assistive…). For scheduled painful procedures
such as therapies or intramuscular injections, the video
recording initiated 2 min prior to the potentially painful
stimuli and continued for 2 min thereafter. In cases where
participants had the cognitive capacity (n = 24, resulting
in a total of 43 recorded expressions), they were kindly
asked to self-rate their pain on a scale of 1 to 10 using
the Wong-Baker Faces pain rating scale.

Efforts to reduce potential biases in the video recordings
were meticulously implemented. Standardized protocols,
with instructions for camera placement, lighting, and the
duration of the recordings were stablished to minimize vari-
ation in recording conditions. Moreover, observers
involved in the video recording underwent training includ-
ing pain recognition, and the recording equipment and
protocol, in order to homogenize the observers’ understand-
ing and approach. In addition, observers were blinded
(when possible) to the participants’ medical histories to
avoid preconceived notions influencing the recording
process. Finally, video recordings were independently
review by evaluators who were not involved in the record-
ing sessions.
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Throughout the study duration, a comprehensive total of
127 recordings were successfully acquired. These record-
ings depicted various sources of pain in the painful
images, which were classified as follows:

- Intramuscular injection: 77 images (60.6%)
- Muscular stretching: 32 images (25.2%)
- Other sources of pain: 18 images (14.2%)

Expert evaluation of video recordings. All video recordings
underwent meticulous offline evaluation by two highly
experienced physiotherapists, with more than 10 years of
expertise in treating individuals with CP. These evaluators
independently applied the three observation scales: the
Wong-Baker Faces pain rating scale, NCAPC, and FACS.

In this study, efforts to reduce potential biases in the phy-
siotherapists’ evaluations were meticulously implemented.
Recognizing the inherent subjective biases in traditional
observational scales, thorough training was provided to the
two clinicians involved to standardize their application of
these scales, aiming for a consensus in their evaluations to
minimize individual subjective interpretations. Furthermore,
by using three different observational scales we aim to
provide a comprehensive view of pain assessment and to miti-
gate the limitations inherent in any single scale. Additionally,
to further prevent bias, the design of the study ensured that
evaluators using traditional scales were blinded to each
other’s results, promoting independent evaluations free from
preconceived expectations about the pain scores. Rigorous
statistical analysis, specifically using the Intraclass
Correlation Coefficient (ICC) model 2,k, was conducted to
assess inter-rater reliability among the clinicians (MSP,
MSR, MSE k, and n used in the equation to refer, respect-
ively, Mean Square Persons, Mean Square Raters, Mean
Square Error [from a two-way ANOVA], and number of
persons).76

ICC(2, k) = MSP−MSE
MSP+ (MSR−MSE) / n

Physiotherapists might be more accurate recognizing pain
expressions resulting from their own interventions, such as
muscle stretching, which they have observed on a regular
basis, rather than pain expressions caused by procedures
less related to their profession, such as intramuscular injec-
tions. Thus, the ICC was separately calculated for each type
of painful stimulus, in order to ascertain whether the evalua-
tor’s familiarity with the particular painful procedure or situ-
ation influenced the agreement.

The interpretation of the ICC scores followed the cat-
egories proposed by Fleiss (1986):77 low agreement (ICC
< 0.40), fair/good agreement (ICC 0.41 to 0.75), and excel-
lent agreement (ICC > 0.75).

For a precise comparison with the AI system’s assess-
ments, we rigorously applied a mathematical process to
reclassify the mean scores from each observational scale
into binary outcomes. Specifically, a “0” score was desig-
nated to signify “no pain”, whereas any score above 0
denoted the detection of pain. Consequently, an image
was categorized as “no pain” only if there was a unanimous
‘0’ score consensus among all evaluators. For any deviation
from this consensus, the image was systematically labelled
as “pain”. This systematic categorization facilitated a clear
and unbiased distinction between pain and no pain expres-
sions based on quantifiable measures.

Challenges with self-reports. Despite our initial efforts to
collect retrospective self-reports from participants follow-
ing the video recordings, we encountered notable chal-
lenges, primarily due to cognitive and attentional issues
experienced by the participants. Consequently, only a
limited number of self-reports, totaling 10, could be suc-
cessfully gathered. The challenge of obtaining only 10 self-
reports, however, significantly impacted our methodology,
compelling us to abandon the initially proposed compara-
tive approach. This adjustment underscores the broader dif-
ficulties inherent in pain assessment for individuals with
CP, and reflects the critical need to adapt research method-
ologies to effectively address these complexities.

Table 1. Clinical characteristics of participants.

GMFCS n % CFCS n % CP Subtype n %

Level I 0 0 Level I 6 11.3 Spastic 42 79.2

Level II 5 9.4 Level II 7 13.2 Dyskinetic 3 5.7

Level III 1 1.9 Level III 11 20.8 Ataxic 1 1.9

Level IV 17 32.1 Level IV 14 26.4 Mixed 7 13.1

Level V 19 35.8 Level V 15 28.3

CP: cerebral palsy; GMCFC: Gross Motor Function Classification System,68 CFCS: Communication Function Classification System.69 These scales classify the
person into five levels of function, lower scores indicating lower impairment of function.

Sabater-Gárriz et al. 5



Deep learning pain recognition

Datasets. Aiming at building a pain recognition system
applicable to images of individuals with CP, we merge
three extensively used databases: the UNBC-McMaster
Shoulder Pain Expression Archive Database,78 the
Multimodal Intensity Pain dataset (MInt PAIN),79 and the
Delaware Pain Database.51 For the sake of brevity, we
will subsequently denote this merged dataset as PAIN-DB.

The UNBC-McMaster Shoulder Pain Expression
Archive Database comprises 25 adult patients afflicted
with shoulder pain. It features a collection of 200 distinct
range of motion tests, encompassing both affected and
unaffected limbs. Data acquisition involves videos captur-
ing facial expressions, albeit in low resolution, which also
include social interaction and verbal communication.
Annotations include self-report measurements via Visual
Analog Scales (VAS) encompassing sensory and affective
aspects, along with pain intensity assessed by both self-
report and observer (Observer-Assessed Pain Intensity,
OPI). Moreover, annotations encompass limb information
(affected/unaffected) and FACS coding.

The MInt PAIN Database presents a collection of images
obtained through electrical muscle pain stimulation, involv-
ing 20 subjects. Each subject participated in two trials
during data acquisition, with each trial encompassing 40
pain stimulation sweeps. Within these sweeps, two types
of data were captured: one representing the absence of
pain, and the other portraying pain at four varying
intensities.

The Delaware Pain Database is an extensive compilation
of fully characterized photographs featuring 127 female and
113 male subjects, with an emphasis on painful and neutral
expressions. The dataset’s primary hallmark lies in its
remarkable diversity across dimensions of race, gender,
and expression intensity.

Upon the integration of the three datasets, a relabeling
into two classes was performed: images featuring pain

and images devoid of pain. Consequently, images encom-
passing varying degrees of pain were grouped within the
first class, while the remaining images were categorized
under the second class. This reduction served two primary
objectives: foremost, the normalization of data across the
datasets, aligned with the two-class structure in the
Delaware Pain Database; and secondly, the transformation
of the task into a binary classification problem.

Furthermore, we did not use all available frames from
UNBC-McMaster and MInt PAIN to avoid overfitting on
the users they contain. Since there is little variation in con-
secutive frames, instead of using them all, a sample of
twenty frames per user and class was taken. The final
PAIN-DB dataset, composed by images from the three
described databases, is summarized in Table 2. Figure 1
depicts some example images from each database.

To assess the efficacy of the PAIN-DB-trained pain rec-
ognition system on individuals with CP, a testing dataset
was curated from video recordings of study participants
with CP, designated as CP-PAIN. By using pin-pointed
moments of pain expression as determined by one physio-
therapist specialized in neurological rehabilitation, two
frames were extracted from each video: one capturing the
moment of pain manifestation and another from a
non-pain moment, thus ensuring a balanced dataset com-
position. Regrettably, a subset of videos proved unsuitable
for inclusion due to two primary reasons: substantial occlu-
sions obscuring facial features during pain instances, and
participants wearing surgical masks that obscured half of
the face. Although human observers can bypass these
occlusions to discern pain expressions, our automated
system lacked training for such scenarios, which could
introduce unpredictable outcomes. Consequently, these
videos were omitted. The resulting CP-PAIN dataset com-
prised 109 images, representing a dataset suitable for evalu-
ation. Two example images from this dataset can be found
on Figure 1, in the rightmost column.

Image preprocessing. We conducted a pre-processing phase
to enhance the performance of the neural networks, which
comprised cropping and background subtraction.

Images were cropped into a squared region containing
the face (similar to Haque et al. (2018) approach79). This
was achieved through the application of the well-
established multitask cascaded convolutional networks for
face detection.80

Furthermore, the background subtraction was accom-
plished through the integration of U2-Net,81 which facili-
tates precise object segmentation. In our case, we used
their pretrained weights that had been fine-tuned for
human segmentation. Following the extraction of a binary
mask outlining the background pixels, these regions were
replaced with white color, thereby retaining only the
human subject within the image frame.

Table 2. Breakdown of PAIN-DB dataset into the datasets forming it.

Dataset Users Images Levels
Resolution (width
× height)

MInt 20 800 5 1920 × 1080

Delaware 240 803 2 5152 × 3864

UNBC-McMaster 25 980 5 320 × 240

Total 285 2.583 2 Mixed

Levels column refers to the number of pain levels used to label the images of
the dataset. Notice that not all images from the MInt PAIN and the
UNBC-McMaster datasets were used, and that the final dataset contains only
two classes: pain and no pain.
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The combined cropping and background subtraction
procedures were devised to streamline the pain recognition
task for the neural networks. This dual process serves both
to eliminate any interference introduced by factors other
than the person’s facial features and to standardize the
images. This standardization ensures that the facial attri-
butes consistently occupy an approximate spatial align-
ment. Finally, the resultant images were resized to the
input dimensions required by the distinct network architec-
tures utilized in our study. Examples of the preprocessed
images for each class and dataset are shown in Figure 2.

Models. We built ten neural networks aiming at recognizing
pain from images (see Table 3). For the sake of simplicity,
we denoted the models introduced in Song et al. (2014),82

Li et al. (2015),83 and Ramis et al. (2022),63 as SongNet,
WeiNet, and SilNet, respectively.

All the employed networks share a foundation in convo-
lutional architecture; however, they diverge in terms of
architectural constituents, including the arrangement of
convolutional layers, pooling layers, fully connected
layers, and other elements. This architectural disparity is
reflected in the count of parameters employed by each
network. The input size of the networks is 224 × 224,
with the exception of WeiNet and SilNet, which is 64 ×
64 and 150 × 150 respectively.

Six out of the ten models—VGG16, VGG19, ResNet50,
ResNet101V2, Xception, and InceptionV3—were initia-
lized with pre-trained weights sourced from the ImageNet
dataset.89 For these models, final fully connected
layers were replaced with an average 2D pooling layer
and a new fully connected layer with the appropriate
number of outputs: two, pain and no pain. The remaining
models—AlexNet, SongNet, WeiNet, and SilNet—were
trained from scratch.

By integrating these varied architectures, we can compare
their performance and analyze the impact of architectural
selections concerning tasks related to pain recognition.

The models were implemented using the Python program-
ming language, harnessing the capabilities of the Keras
library. In the case of the AlexNet, WeiNet, SongNet, and
SilNet models, we constructed each layer sequentially
within the Keras framework. Conversely, the remaining
models were conveniently available through the Keras
API, inclusive of their pre-trained weights sourced from
the ImageNet dataset.

Metrics. To assess the performance of the different models,
common metrics used when evaluating classification tasks,
namely accuracy, precision, recall, and F1-score, were used
(TP, TN, FP, and FN used in the equations to refer, respect-
ively, to the number of true positives, true negatives, false
positives, and false negatives):

Accuracy = TP+ TN

TP+ TN + FP+ FN
(1)

Precision = TP

TP+ FP
(2)

Recall = TP

TP+ FN
(3)

F1 score = Precision · Recall
Precision+ Recall

(4)

• Accuracy (equation (1)): it measures the proportion of
correctly classified instances among the total instances
in the dataset. It provides an overall view of the
model’s correctness. However, it might not be suitable
when dealing with imbalanced datasets where one
class dominates, as it can be misleading.

Figure 1. Example of images with and without pain, from the four datasets employed in this study.
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• Precision (eq. (2)): it is a measure of how many of the
instances predicted as positive by the model are actually
true positives. It focuses on the correctness of positive
predictions. High precision indicates that the model is
careful in labeling instances as positive.

• Recall (eq. (3)): it quantifies how many of the actual
positive instances were correctly predicted by the
model. It emphasizes the model’s capability to capture
all positive instances.

• F1-Score (eq. (4)): it is the harmonic mean of precision
and recall. It combines both precision and recall into a
single value, providing a balanced assessment of a
model’s performance. It is particularly useful when
dealing with imbalanced datasets or situations where
both false positives and false negatives are of concern.

When evaluating a model’s performance in image classifi-
cation, these metrics collectively provide a comprehensive
understanding of its strengths and weaknesses. Accuracy
gives a global view of performance, precision focuses on
correct positive predictions, recall emphasizes capturing
all true positives, and F1-score offers a balanced perspec-
tive considering both precision and recall. Using this set
of metrics ensures a nuanced assessment of a model’s
effectiveness in classifying images accurately and reliably,
even in scenarios where data distribution might be uneven
or where the cost of false positives and false negatives
differs significantly.

Models’ explanation. We applied the model-agnostic XAI
technique known as Local Interpretable Model-agnostic
Explanations (LIME).90 LIME operates by introducing
perturbations to the image under examination, thereby gen-
erating multiple modified versions of the image. These

Figure 2. Resulting images after the pre-processing performed before any training or testing on the four databases, featuring a face crop
and background subtraction.

Table 3. List of network architectures used in this study for pain
recognition.

Work Model/s Parameters

Krizhevsky et al. (2012)84 AlexNet 88.7 M

Song et al. (2014)82 SongNet 172.7 K

Li et al. (2015)83 WeiNet 1.7 M

Simonyan and Zisserman (2015)85 VGG16 14.7 M

Simonyan and Zisserman (2015)85 VGG19 20 M

He et al. (2015)86 ResNet50 23.6 M

He et al. (2015)86 ResNet101V2 42.6 M

Szegedy et al. (2015)87 InceptionV3 21.8 M

Chollet (2017)88 Xception 20.9 M

Ramis et al. (2022)63 SilNet 184.9 M
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perturbed samples are subsequently processed through the
model, and the resulting prediction outcomes are employed
to establish the relevance of each region within the image
with respect to a specific class. To further understand the
classification processes employed by the models, we gener-
alized the local explanations derived from a subset of
samples to formulate global explanations for each class.
This approach followed the methodology introduced in
Manresa-Yee et al. (2023),91 where local explanation
masks are transformed into a normalized space and then
averaged to produce a comprehensive heatmap that deline-
ates the significance of individual facial features in the clas-
sification process. For a better comprehension of the
explanation process, Figure 3 provides a visual representa-
tion of the distinct steps involved.

Procedure. All trainings for the ten networks were per-
formed on a computer featuring an NVIDIA 4090 GPU
and an i9 9900KF CPU, generously supplied by the
Universitat de les Illes Balears. This same hardware config-
uration was consistently employed for the evaluation phase.
Overall, we did not encounter any notable challenges or
limitations with the selected hardware configuration. It
adequately supported the execution of our experiments
without impeding our ability to achieve meaningful results.

Following a series of preliminary experimental itera-
tions, we conducted several training sessions, each compris-
ing 50 epochs, on a training–validation partition of the
dataset. Through this process, we systematically varied
the learning rate across three orders of magnitude (0.01,
0.001, and 0.0001) and assessed the resulting performance
on the validation set. Based on these evaluations, we deter-
mined that a learning rate of 0.001 yielded the highest
accuracy. Similarly, we monitored the training and valid-
ation loss curves across epochs to gauge the model’s con-
vergence and generalization capabilities. After observing
diminishing returns beyond 30 epochs, we determined
that this value struck a favorable balance between perform-
ance and training time. Additionally, continuing training
beyond this point did not yield significant improvements
in validation loss, indicating the risk of overfitting.
Additionally, data augmentation layers were incorporated
into the training pipeline, encompassing randomized pro-
cesses such as rotation, mirroring, and contrast adjustment.
This integration aimed at introducing invariance to these
intrinsic properties while concurrently augmenting the
spectrum of image variations during training.

Regarding the utilization of pretrained weights, we
adopted a cautious approach to mitigate the risk of overfit-
ting, given the relatively small size of our training dataset.
We experimented with various fine-tuning strategies,
including freezing lower blocks of the models and training
only the last layers, training the entire model, and a combin-
ation of both. Surprisingly, freezing the lower blocks did
not yield performance improvements in our case; instead,

it hindered the convergence speed during training. As a
result, we opted to fine-tune the entire model on our
dataset and task, with no frozen layers left.

The experimental design comprised a total of three train-
ing scenarios for each of the ten models detailed in the
Models Section. Further, we employed K-cross validation
with K = 5 to ensure more stable and reliable results, for
each of the three training scenarios, 150 trainings were per-
formed in total. Regarding the choice of K = 5 in the
K-cross validation, this decision was made to strike a
balance between the number of training iterations and the
reliability of the results, providing a reasonable approxima-
tion of model performance while avoiding excessive com-
putational overhead. Overall, the K-cross validation
approach enhanced the stability and reliability of our
results by mitigating the variability that can arise from dif-
ferent data partitions or training iterations.

Initially, the merged PAIN-DB dataset was partitioned
into training and testing subsets, maintaining an 80%–20%
and with varying test subsets, according to the K-cross valid-
ation procedure. This training phase involved models being
trained on nearly all users’ data, thereby assessing their per-
formance in predicting pain based on images from users they
had previously encountered. This training configuration
aimed to yield the most optimal outcomes among the three.

The second training iteration closely resembled the initial
one, using the PAIN-DB dataset. However, in this iteration,
the partitioning was user-centric rather than image-centric,
while preserving the same train-test ratio. Here, models
were trained using images from a subset of users, with the
remaining users reserved for the testing phase. This approach
sought to evaluate the models’ ability to accurately perceive
pain within images of users unseen during training.

Finally, a training with the entire PAIN-DB dataset was
conducted, testing on the pain images collected from indivi-
duals of the CP-PAIN dataset. The primary distinction here
was that models were evaluated on users external to the
PAIN-DB dataset. For this particular training scenario,
there was no K-cross validation, but rather five different
trainings on the same data, since the testing set is external
to the PAIN-DB dataset. This third scenario aimed to valid-
ate the extrapolation of knowledge gained from the
PAIN-DB dataset to the CP-PAIN dataset, which presented
additional challenges due to its external nature and inclu-
sion of users with cerebral palsy. The main challenge
with the CP-PAIN dataset was its limited size, which pre-
cluded direct training on it. Instead, we sought to generalize
the models trained on the PAIN-DB dataset to the CP-PAIN
dataset.

The three-tiered approach to experimentation was devised
to sequentially validate network performance on well-
established pain recognition datasets. This stratification
allowed for enhanced assessment of model effectiveness on
a novel dataset, the size of which precluded fine-tuning
strategies.
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Results

Inter-rater agreement among physiotherapists

In the course of the study, both physiotherapists con-
ducted a grand total of 762 assessments, all stemming
from the scrutiny of 127 video recordings. The inter-rater
agreement, measured through the ICC, exhibited the fol-
lowing hierarchy of agreement levels for the observa-
tional measures:

• FACS = 0.751 (excellent)
• Wong-Baker Faces pain rating scale = 0.639 (fair/good)
• NCAPC = 0.551 (fair/good)

For a more comprehensive understanding of the inter-rater
agreement contingent on the type of painful stimulus, refer
to Table 4.

These findings show a higher ICC across all scales
when pain was induced by muscular stretching (mean of
3 scales = .825, excellent ICC), followed by an unknown
source of pain (mean of 3 scales = .632, fair ICC), and
lastly, intramuscular injection (mean of 3 scales = .522,
fair ICC). Given that FACS exhibited the highest level of
agreement, it was employed to label the image into the
“pain”/”no pain” classes.

Deep learning pain recognition

The outcomes derived from the three distinct training
scenarios are presented in Figure 4. As expected, the

initial scenario, where networks were evaluated on users
they had encountered during training, yielded the most
favorable results overall. Notably, upon assessment with
previously unencountered users, a marginal reduction
was observed in both accuracy and F1 score across
most networks. The third scenario, involving testing
on users from the distinct CP-PAIN dataset, led to
slightly diminished metrics. Among the models assessed,
merely three attained performance levels surpassing 70%:
InceptionV3, ResNet101V2, and Xception. Remarkably,
InceptionV3 exhibited the most promising outcomes
on the CP-PAIN dataset, attaining an accuracy of

Figure 3. Visualization of the explanation process followed for the identification of the important regions for a specific model to classify
into a class.

Table 4. ICC of observational measures and pain/no pain
measurement proportion.

Source of pain Measure

Wong-Baker NCAPC FACS

Intramuscular injection 0.412 0.590 0.565

Muscular stretching 0.845 0.739 0.891

Other 0.661 0.469 0.764

Videos rated as “no pain” 20 19 16

Videos rated as “pain” 107 108 111

NCAPC: Non-Communicating Adults Pain Checklist; FACS: Facial Action
Coding System; Wong-Baker: the Wong-Baker Faces pain rating scale.
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62.67% alongside an F1 score of 61.12%. Examples of
the pain recognition task of this model on the different
datasets, including true positives and false negatives,
can be found in the appendix section. We expect these
examples to provide a more tangible understanding of
the model’s capabilities.

Figure 5 illustrates precision and recall values for each
class (pain and no pain) on the CP-PAIN dataset. The

precision values across networks display a relatively
balanced distribution between classes. Interestingly, the
recall values, which highlight the model’s aptitude for
identifying specific classes, underscore a consistent
trend toward pain prediction over no pain prediction for
all networks. This trend is particularly pronounced in
certain models such as AlexNet, VGG19, ResNet50, and
Xception, which achieve a recall of 80% or higher for pain

Figure 4. Accuracy (top) and F1 score (bottom) of the pain prediction results of the three different trainings performed, displayed by
network. The values correspond to the average between the five validation splits, for each training scenario.
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but exhibit figures of 20% or lower for no pain instances. In
contrast, InceptionV3, ResNet101V2, and SilNet exhibit
more balanced recall values. This balance is further trans-
lated into higher F1 scores, as depicted in the lower chart
of Figure 4.

Figure 6 presents heatmaps that illustrate the signifi-
cance of distinct facial regions in predicting a specific
class for each of the trained models. Evidently, there
exists subtle divergence among the models regarding the
specific facial regions they emphasize when discerning

Figure 5. Precision (top) and recall (bottom) of the pain prediction results by class on the CP-PAIN dataset, displayed by network. The
values correspond to the average between the five validation splits, for each training scenario.
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the presence or absence of pain. However, noticeably, the
heatmaps from models with pre-training and those without
pre-training appear to segregate into two distinct clusters.
This observation suggests a proclivity for models within
each category to prioritize particular facial regions to a
greater or lesser extent during the classification process.

In an ideal scenario, the models should exhibit similar heat-
maps when applied to both the PAIN-DB and CP-PAIN data-
sets. However, as depicted in Figure 6, certain models deviate
from this ideal alignment. SilNet,WeiNet, and SongNet prom-
inently emphasize the forehead region when classifying
instances as “Not pain” in the CP-PAIN dataset, a pattern
not evident in the PAIN-DB dataset. This disparity under-
scores the substantial impact of database differences on
model predictions. Similarly, ResNet50 also demonstrates dis-
tinct results by focusing on the lower facial region for pain rec-
ognition in CP-PAIN, while primarily centering on the central
facial area in the case of the PAIN-DB dataset. In contrast, the
remaining models appear to exhibit relatively consistent reli-
ance on the same facial regions, irrespective of the database
under consideration. Another noteworthy observation pertains
to the importance of the lower portion of the face, particularly
encompassing the mouth and its vicinity, which emerges as a
pivotal factor in pain recognition. Conversely, the absence of
pain is predominantly associated with the upper facial region,
particularly focusing on the eyes and their surroundings.

Discussion
The primary objective of this study was to develop an
automated facial recognition system based on DL for the

assessment of pain in adults with CP. To achieve this
goal, we developed and trained this system using a specific
dataset of images of individuals with CP (CP-PAIN)
curated for this very purpose and three existing well-known
pain databases. Subsequently, we compared pain scores
obtained from the automated facial recognition system
with the pain scores provided for each image of the
CP-PAIN dataset, obtained by consensus by two independ-
ent physiotherapists experienced in caring for individuals
with CP. Our findings revealed a 60% accuracy rate for
the facial recognition system, thus confirming the feasibility
of adapting pain detection from images for patients
with CP.

To the best of our knowledge, this study marks a pio-
neering initiative introducing pain detection through
image analysis for individuals with CP. This innovation
has the potential to offer valuable solutions for evaluating
pain within this population, a challenge often noted by clin-
icians and family members alike.21 Beyond addressing this
pressing need, the application of image-based pain detec-
tion has the added advantage of mitigating the intrinsic sub-
jectivity inherent in human pain assessments,31–33 thereby
reducing associated inaccuracies. Our findings reflect a
noteworthy aspect of this subjectivity. Even in cases
where the evaluator has a deep familiarity with the individ-
ual with CP under assessment, our results revealed the pres-
ence of a subjective bias that depends on the evaluator’s
level of familiarity with the specific painful procedure
being evaluated. To this regard, physiotherapists exhibited
a higher level of agreement when assessing pain induced

Figure 6. Heatmaps representing face regions importance for the different models, classes, and databases.
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by muscle stretching compared to pain resulting from intra-
muscular injection or an unknown source of pain. This sub-
jectivity in pain assessment has been demonstrated in other
studies that measured the degree of agreement between
individuals with cerebral palsy and their parents,35,36 as
well as with healthcare professionals.37 This highlights
the importance of objective, technology-assisted
approaches in enhancing the precision and objectivity of
pain assessment in individuals with CP.

Given the scarcity of relevant patient data for training,
we devised a strategy involving the training of pain detec-
tion models on established datasets tailored for this task.
Subsequently, the models’ performance was evaluated on
a minimal test set, CP-PAIN, constructed specifically for
this study, which comprises images of users with CP,
both with and without pain. Despite the limited number
of images contained in CP-PAIN, this dataset is the first
of its kind. Cognitive factors and motor impairment may
affect the gestures, body movement, and mimics in indivi-
duals with neuromotor disorders, such as individuals with
CP, what could lead to idiosyncratic pain expressions or
mask pain of low intensity.71,92–94 Our approach incorpo-
rates a specific dataset of pain in this population that may
help enhance DL pain recognition. Further refinement and
expansion of our dataset can harness the power of DL to
create a more robust and reliable pain detection system.
The need for a larger and more diverse image datset
becomes evident as we strive to train our DL model to
better recognize nuanced pain expressions in this unique
population. Although limited and prone to expansion and
quality improvement, the CP-PAIN database could be a
first contribution to the DL analysis of pain expressions in
complex populations with pain facial expressions diverse
from those of the general population,71,92–94 collected in
other existing databases.

Initially, the performance achieved on the training set
reached a maximum of 70% for users unknown to the
models. Consequently, this outcome can be considered an
upper-bound estimation for the performance attainable on
CP-PAIN. Acknowledging this modest performance, likely
attributed to the limited training data, we plan to enhance
these results in future work by diversifying the training data-
sets. Additionally, we emphasize the necessity for meticu-
lous analysis of images from each database, particularly
those extracted from video recordings, since the imprecision
in annotations during video frame selection could introduce a
significant number of erroneously labeled images, warrant-
ing careful consideration.

Our findings on the CP-PAIN dataset unveiled 60%
accuracy, thereby establishing the viability of adapting
pain detection from images to patients with CP. A note-
worthy trend emerged where the models exhibited a pro-
nounced trend towards detecting pain in images,
surpassing instances of identifying no pain. This proclivity
could be attributed to the frequent appearance of subjects in

the test images exhibiting open mouths and exposed teeth, a
phenomenon potentially associated by the networks with
pain expressions seen during training. This accuracy in
pain detection, while seemingly modest, marks a significant
milestone in clinical research, as it underscores the potential
for developing a specialized assessment model tailored to
individuals with complex neuromotor conditions, a devel-
opment that holds promise in reducing the inherent subject-
ivity and biases often associated with human evaluations of
pain.20–22

Comparing the results obtained in this study with exist-
ing literature in terms of measurable performance is chal-
lenging due to several factors.95 Firstly, different datasets
were used, making direct comparison difficult. Secondly,
this study does not exploit temporal information, which
was considered in other works. Thirdly, many works aim
for pain level classification, rather than solely classification
between pain and no pain in images. No other work
employing the same four datasets (UNBC-McMaster
Shoulder Pain Expression Archive Database, Mint PAIN
Database, Delaware Pain Database, and CP-PAIN) as this
study has been found. Typically, existing studies focus on
testing new models or strategies and optimizing perform-
ance on a single dataset rather than generalizing results to
unseen datasets. For instance, many studies prefer using
the UNBC dataset, with varying results over the years:
86.10% accuracy,96 87.20%,97 76.00%,98 and 93.16%,99

using the Leave-One-Subject-Out (LOSO) cross-validation
method. It is worth noting that these results, while higher
than those obtained in this study, were achieved on a
single dataset using a different cross-validation method,
making direct comparisons unfair. No other works utilizing
the MInt pain database with solely 2D information were
found, and no deep learning-based approaches were identi-
fied for the Delaware dataset, likely due to its reduced size.
Therefore, while comparisons with existing literature may
be challenging, this study contributes valuable insights by
leveraging multiple datasets, which may enhance the gener-
alizability and robustness of the findings. Furthermore, we
were unable to find prior work that included users with
CP, making direct comparisons with our results on the
CP-PAIN dataset unfeasible. As pioneers in studying auto-
matic pain recognition among individuals with cerebral CP,
our study lays the foundation for future research in this area.

Given the focus on real-world applicability, the scalabil-
ity of our automated facial recognition system is a critical
consideration. While the system was not specifically
trained on individuals with cerebral CP, the results obtained
from the CP-PAIN dataset can reasonably generalize to
other individuals within the CP population. This assump-
tion is grounded in the understanding that the users in the
CP-PAIN dataset represent a sample from the broader CP
population and are likely to share common characteristics
in their pain expressions. However, challenges may arise
when deploying the system in diverse environments or
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when faced with varying degrees of pain expressions within
the CP population. As the system is deployed in different
settings, the availability of more data from individuals with
CP will likely increase. This presents an opportunity for fine-
tuning the models using CP-specific data, thereby enhancing
the system’s performance in pain recognition tailored to this
population. Moreover, further exploration of the similarities
in pain expression among individuals with CP can provide
valuable insights for improving the system’s accuracy and
reliability in real-world scenarios.

For the models exhibiting the highest performance, such as
InceptionV3 andResNet101V2, the application of XAI techni-
ques have unveiled an interesting finding: when employing
models trained on the PAIN-DB dataset on users with CP,
the essential regions crucial for accurate pain identification
remain largely unaffected. The consistent focus of these two
models on identical facial regions for pain recognition both
for users with CP and without suggests a noteworthy similarity
in the expression of pain between these two distinct groups.
However, it is essential to acknowledge that this finding does
not consider potential idiosyncrasies in the facial expression
of pain in subjects with complex neurological disorders,
which may have led to the presence of false positives. It is
important to note that some idiosyncratic behaviors, such as
crying, moaning, flinching, having red cheeks, grunting, or
sticking out the tongue can be misleadingly labeled as pain
within the CP population, while they can express other physio-
logical or emotional events.93 On the contrary, other facial ges-
tures, such as smiling or laughing, may be used to express pain
in individuals with poorer communication or motor ability.94

This underscores the need for further training of the system
using a more diverse dataset of images of individuals with
CP. We are committed to addressing potential variations in
the expression of pain and enriching the robustness of our
models for pain recognition across diverse user groups. This
approach would ensure a more precise and reliable application
of our technology in clinical and medical settings.

This study was not without limitations. In addition to the
previously mentioned constraint of a limited number of
images in our database, we also faced the unforeseen chal-
lenge of not being able to collect self-reports from most
individuals with CP, as originally planned, what would
have been valuable to evaluate the facial recognition
system’s measurements in a more accurate way. Another
potential limitation was the unequal representation of differ-
ent types of painful stimuli.

DL pain recognition allows envisioning the possibility
of mitigating the limitations of human-based assessments
of pain in complex conditions, such as CP, and achieving
a level of objectivity and consistency that can significantly
benefit the care and well-being of individuals with commu-
nication problems and cognitive and neuromotor disorders
affecting pain expression. Therefore, our work not only
showcases the potential of adapting technology for health-
care applications but also emphasizes the importance of

ongoing research and data collection to advance and
extrapolate the capabilities of our model in the future.

Conclusions
Our study addresses the profound challenges in pain assess-
ment for individuals with CP, highlighting the limitations of
existing methodologies and the need for approaches tai-
lored to this unique population. Unlike conventional
studies that often utilize datasets and models designed for
neurotypical individuals, our research introduces an innova-
tive approach by developing and employing the CP-PAIN
dataset. This dataset is specifically designed to capture the
diverse and often unique expressions of pain characteristic
of individuals with CP, highlighting a significant departure
from the broader application DL models prevalent in
current research. Our efforts to customize DL models for
the CP population underscore the complex nature of pain
expressions in these individuals, which are not adequately
addressed by standard facial recognition systems.

Despite showing promise, with an initial accuracy rate of
60%, our findings also signal the need for further enhance-
ments and the expansion of the CP-PAIN database. A more
comprehensive collection of data is essential for refining
DL models to accurately identify the nuanced pain expres-
sions of individuals with CP, a step towards developing a
universally applicable pain assessment tool. Our study not
only contributes to the specialized field of pain assessment
in CP but also emphasizes the critical importance of ongoing
research. By focusing on the unique needs of individuals
with CP, we underscore the broader challenge of creating
more inclusive and accessible pain assessment methodolo-
gies. This endeavor not only advances our understanding
of pain assessment in the context of CP but also sets a prece-
dent for the importance of tailoring research and technology
to meet the specific needs of underserved populations.

Finally, in addressing the ethical and privacy implica-
tions of using automated facial recognition for pain assess-
ment in clinical settings, it is crucial to obtain transparent
informed consent, protect sensitive biometric data through
strict adherence to data protection laws and advanced
encryption, and prevent bias to ensure equitable patient
assessments. Continuous stakeholder engagement and
system evaluation are imperative for upholding ethical stan-
dards and patient privacy.

Abbreviations
AI Artificial Intelligence.
CP-PAIN dataset of facial pain expression images for

individuals with cerebral palsy based on video
recorded during potentially painful procedures.

CP Cerebral Palsy.
FACS Facial Action Coding System.
LIME Local Interpretable Model-agnostic Explanations.
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MInt PAIN Multimodal Intensity Pain dataset.
NCAPC Non-Communicating Adults Pain Checklist.
PAIN-DB dataset including the UNBC-McMaster Shoulder

Pain Expression Archive Database, the Multimodal
Intensity Pain Dataset, and the Delaware Pain
Database.
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Appendix
See Figures 7–10.

Figure 7. Examples of images correctly classified as “pain” by the InceptionV3 model on the CP-PAIN dataset.

Figure 8. Examples of images incorrectly classified as “no pain” by the InceptionV3 model on the CP-PAIN dataset.
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Figure 9. Examples of images correctly classified as “pain” by the InceptionV3 model on the PAIN-DB dataset, grouped by original dataset
(by rows).
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Figure 10. Examples of images incorrectly classified as “no pain” by the InceptionV3 model on the PAIN-DB dataset, grouped by original
dataset (by rows).
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